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Integrating evolutionary and regulatory information
with multispecies approach implicates genes and
pathways in obsessive-compulsive disorder
Hyun Ji Noh et al.#

Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in

glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory

elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog,

and mouse. Using a new method that prioritizes likely functional variants, we compared 592

cases to 560 controls and found four strongly associated genes, validated in a larger cohort.

NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding

domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for

regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in

neuroblastoma cells. NRXN1 achieves genome-wide significance (p= 6.37 × 10−11) when we

include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key

component in compulsive behaviors, and show that targeted sequencing plus functional

annotation can identify potentially causative variants, even when genomic data are limited.
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Obsessive-compulsive disorder (OCD) is a highly heritable
(h2= 0.27–0.65)1, debilitating neuropsychiatric disorder
characterized by intrusive thoughts and time-consuming

repetitive behaviors. Over 80 million people worldwide are esti-
mated to suffer from OCD, and most do not find relief with
available therapeutics1, underscoring the urgency to better
understand the underlying biology. Genome-wide association
studies (GWAS) implicate glutamate signaling and synaptic
proteins2, 3, but specific genes and variants have not been vali-
dated. Isolating and characterizing such genes are important for
understanding the biology and developing treatments for this
devastating disease.

In mouse, genetically engineered lines have causally implicated
the cortico-striatal neural pathway in compulsive behavior. Mice
with a deletion of Sapap3 exhibit self-mutilating compulsive
grooming and dysfunctional cortico-striatal synaptic transmis-
sion, with abnormally high activity of medium spiny neurons
(MSNs) in the striatum. Resulting compulsive grooming is
ameliorated by selective serotonin reuptake inhibitor (SSRI), a
first-line medication for OCD4. Similarly, chronic optogenetic
stimulation of the cortico-striatal pathway in normal mice leads
to compulsive grooming accompanied by sustained increases in
MSN activity5. Thus, excessive striatal activity, likely due to
diminished inhibitory drive in MSN microcircuitry, is a key
component of compulsive grooming. The brain region disrupted
in this mouse model is also implicated by imaging studies in
human OCD6.

Pet dogs are a natural model for OCD amenable to genome-
wide mapping due to their unique population structure7. Canine
compulsive disorder (canine CD) closely parallels OCD, with
equivalent clinical metrics, including compulsive extensions of
normal behaviors, typical onset at early social maturity, roughly a
50% rate of response to SSRIs, high heritability, and polygenic
architecture8. Through GWAS and targeted sequencing in dog
breeds with exceptionally high rates of canine CD, we associated
genes involved in synaptic functioning and adhesion with CD,
including neural cadherin (CDH2), catenin alpha2 (CTNNA2),
ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase
(PGCP)8, 9.

Human genetic studies of related disorders, such as autism
spectrum disorders (ASD), suggest additional genes. Both ASD
and OCD are characterized by repetitive behaviors, and high
comorbidity suggests a shared genetic basis6. Genome-wide stu-
dies searching for de novo and inherited risk variants have con-
fidently associated hundreds of genes with ASD; this set may be
enriched for genes involved in OCD10.

Focusing on genes implicated by model organisms and related
disorders could find variants underlying OCD risk, even with
smaller sample sizes. Researchers, particularly in psychiatric
genetics, are wary of “candidate gene” approaches, which often
failed to replicate11. Closer examination of past studies suggests
this approach is powerful and reliable when the set of genes tested
is large, and the association is driven by rare variation11. A study
testing 2000 candidate genes for association with diabetic reti-
nopathy identified 25 genes, at least 11 of which achieved
genome-wide significance in a GWAS of type 2 diabetes, a related
disorder12, 13. A targeted-sequencing study of ASD, with 78 genes,
identified four genes with recurrent, rare deleterious mutations;
these four genes are also implicated by whole-exome sequencing
studies14. Candidate gene studies also replicated associations to
rare variants in APP, PSEN1, and PSEN2 for Alzheimer’s dis-
ease15, PCSK9 for low-density lipoprotein–cholesterol level16, and
copy-number variants for autism and schizophrenia10.

Detecting associations driven by rare variants requires
sequencing data, which captures nearly all variants. Although
whole-genome sequencing studies of complex diseases are still

prohibitively expensive, it is feasible to target a subset of the
genome. Sequencing also facilitates identification of causal var-
iants, accelerating discovery of new therapeutic avenues17, 18. For
example, finding functional, rare variants in PCSK9 led to new
therapies for hypercholesterolemia19. One approach is to target
predominantly coding regions (whole-exome sequencing).
Although successful in finding causal variants for rare diseases20,
this approach misses the majority of disease-associated variants
predicted to be regulatory21. A targeted-sequencing approach that
captures both the regulatory and coding variation of a large set of
candidate genes offers many advantages of whole-genome
sequencing, and is feasible when cohort size and resources are
limited.

Here we report a new strategy that overcomes limitations of
less comprehensive candidate gene studies and exome-only
approaches, and identifies functional variants associated with
increased risk of OCD. We start by compiling a large set of 608
genes (~3% of human genes) using studies of compulsive beha-
vior in dogs and mice, and studies of ASD and OCD in humans.
By focusing on this subset of genes, targeting both coding and
regulatory regions, and applying a new statistical method that
incorporates regulatory and evolutionary information, we identify
four associated genes, including NRXN1, the first genome-wide-
significant association reported for OCD.

Results
Targeted-sequencing design. We compiled a list of 608 genes
using three strategies (65 were implicated more than once)
(Supplementary Table 1 and Supplementary Methods):

(1) 263 “model-organism genes”, including 56 genes asso-
ciated in canine CD GWAS and 222 genes implicated in
murine-compulsive grooming.

(2) 196 “ASD genes” from SFARI database (https://gene.sfari.
org/) as of 2009.

(3) 216 “human candidate genes” from small-scale OCD
candidate gene studies (56 genes), family-based linkage
studies of OCD (91 genes), and by other neuropsychiatric
disorders (69 genes).

We targeted coding regions and 82,723 evolutionarily con-
strained elements in and around these genes, totaling 13.2 Mb
(58 bp–16 kb size range, median size 237 bp), 34% noncoding22.

Variant detection. We sequenced 592 European ancestry DSM-
IV OCD cases and 560 ancestry-matched controls using pooled
sequencing, with 16 samples per bar-coded pool (37 “case” pools;
35 “control” pools). Overall, 95% of target regions were
sequenced at >30× read depth per pool (median 112×; ~7× per
individual; Supplementary Fig. 1), sufficient to identify variants
occurring in just one individual, assuming 0.5–1% per base
machine error rate.

We called 124,541 single nucleotide polymorphisms (SNPs)
using Syzygy (84,216)17 and SNVer (81,829)23. For primary
analyses, we focused on 41,504 “high-confidence” SNPs detected
by both, with highly correlated allele frequencies (AF) (Pearson’s
ρ= 0.999, p< 2.2 × 10−16; Supplementary Fig. 2). We see no
significant difference between case and control pools, indicating
no bias in variant detection.

Variant annotation. We used three annotations shown to be
enriched for disease-associated variation to identify likely func-
tional variants in our targeted regions: coding, evolutionary
conserved, and/or DNase1 hypersensitivity site (DHS)21, 24–27.
We annotated 67% (27,626) of high-confidence variants, with
16% coding (49% of those were non-synonymous), 36% DHS,
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and 80% evolutionary conserved or divergent (Fig. 1a). We
measured evolutionary constraint using mammalian GERP++
scores27; scores >2 were “conserved” and scores <–2 were
“divergent”.

Gene-based burden analysis. To identify genes with a significant
load of non-reference alleles in OCD cases, relative to controls, we
developed PolyStrat, a one-sided gene-based burden test that

controls for gene length (Supplementary Fig. 3a) and incorporates
variant annotation. We used four variant categories: (i) all
(Overall), (ii) coding (Exon), (iii) regulatory (variants in DHS),
and (iv) rare (1000 Genomes Project28 AF< 0.01). Each category
is further stratified by evolutionary status: (i) all detected variants;
(ii) slow-evolving conserved (Cons); (iii) fast-evolving divergent
(Div); and (iv) evolutionary (Evo). “Evo” is the subset of “all”
variants annotated as either “conserved” or “divergent”. In total,

27,867 18,72719,498 23,018
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Fig. 1 PolyStrat analysis of pooled-targeted-sequencing data. a Venn diagrams showing the number of SNPs annotated as functional and/or conserved by
PolyStrat. Each of the four dashed circles represents the 41,504 total high-confidence SNPs detected. Within each circle, SNPs are stratified by their
annotations. Each colorful interior circle represents SNPs annotated as exonic (blue), regulatory (green), conserved (red), or diverged (gray) bases. SNPs with
multiple annotations are represented by circle overlaps, and SNPs without any of the included annotations are within the white space of the dashed outer
circle. b PolyStrat p-values for 608 genes (circles) stratified by the 16 (12 shown) annotation categories tested show that just five genes (NRXN1, HTR2A,
LIPH, CTTNBP2, and REEP3) have p-values below the experiment-wide significance threshold after correction for multiple testing (red dashed line). Two
moderately associated, OCD-relevant genes discussed in the text are also noted (STRN and CACNA1C). “Evo” (=evolutionary) are SNPs either conserved
(“Cons”) or divergent (“Div”). The vast majority of genes tested fail to exceed the significance threshold, with the median p-value for each category shown
as a dark black line separating two boxes representing the 25–75% quantile. Notch in boxes shows the 95% confidence interval around median.
c p-values for the five genes robustly implicated in animal models of OCD are significantly lower than p-values for the rest of the genes in our sequencing
set (603 genes), and this difference increases when just rare variants are tested. The solid horizontal line shows median p-value, the boxed area the 25–75%
quantiles, and the vertical black lines extend from the minimum to maximum p-values observed. AF, allele frequency
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PolyStrat considers 16 groups stratified by predicted function and
evolutionary conservation.

PolyStrat p-values are corrected for multiple testing empirically
using a permutation-based method that accurately measures
experiment-wide statistical significance across correlated gene-
based tests, while controlling for type 1 errors (Supplementary
Methods). For most variant categories, quantile–quantile plots
revealed good correspondence between observed values and the
empirical null, with a small number of genes exceeding the
expected distribution in a subset of the burden tests (Supple-
mentary Figs. 3b and 4).

Five of the 608 sequenced genes (0.82%) show significant
burdens of variants in OCD patients (Table 1; Fig. 1b), including
two with excess coding variants (NRXN1 and HTR2A) and two
with excess regulatory variants (CTTNBP2 and REEP3) (Fig. 2).
REEP3 is the only gene with excess divergent (potentially fast
evolving) variants. No genes had a significant burden of rare
variants (Supplementary Fig. 4).

We validated the 46 SNPs contributing to significant gene-
burden tests (7 in LIPH, 13 in NRXN1, 4 in HTR2A, 15 in
CTTNBP2, and 7 in REEP3) by individual genotyping of 571
OCD and 555 control samples (98% of the cohort). Nine variants
failed Sequenom assay design or had low genotyping rates. For
the remaining 37, the genotyping and pooled-sequencing
frequencies are nearly perfectly correlated (Pearson’s ρ= 0.999,
p< 2.2 × 10−16; Supplementary Fig. 5; Supplementary Data 1).

We confirmed that our significant gene-burden test findings
are not driven by population structure (Supplementary Methods)
or linkage disequilibrium (LD), with one notable exception. We
measured pairwise r2 between SNPs contributing to the burden
test in our top five genes, and found strong LD (r2> 0.8) between
one pair, in LIPH. There was no strong LD in NRXN1, HTR2A,
CTTNBP2, and REEP3.

Genes included from model-organism studies (263 genes) and
larger ASD studies (196 genes) were significantly more associated
than genes from human candidate gene studies (216 genes)

Table 1 Five genes with significant variant burden in OCD cases in pooled sequencing data

Genes Description Total SNPs in
PolyStrat

Case-abundant SNPs in
PolyStrat

PolyStrat category (one-sided
burden P)

LIPHa Lysophosphatidic acid production61 7 6 (86%) Overall (4 × 10−4)
NRXN1 Encodes a synapse adhesion molecule 8 8 (100%) Exon-Cons (2 × 10−4)

13 10 (77%) Exon-All (2 × 10−4)
12 10 (83%) Exon-Evo (3 × 10−4)

HTR2A Indirect target for SSRI medications50 4 4 (100%) Exon-Cons (9 × 10−4)
CTTNBP2 Modulates postsynaptic cortactin62 5 3 (60%) DHS-Cons (5 × 10−4)

15 8 (53%) DHS-All (9 × 10−4)
REEP3 Regulates cellular vesicle trafficking 3 3 (100%) Overall-Div (1 × 10−4)

4 4 (100%) DHS-Evo (6 × 10−4)
6 5 (83%) DHS-All (8 × 10−4)

aSignificance of association possibly inflated by linkage between markers
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Fig. 2 Targeted-sequencing detects both coding and regulatory candidate variants in the four top-scoring genes a NRXN1 b HTR2A c CTTNBP2 and d REEP3.
Sequenced “Target regions” are shown as gray boxes above the red “–log10psingle” track displaying the association p-values for all detected variants and the
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00831-x

4 NATURE COMMUNICATIONS |8:  774 |DOI: 10.1038/s41467-017-00831-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


(Kruskal–Wallis p= 5.6 × 10−15). This is consistent with previous
work showing that genes found through smaller candidate gene
studies replicate poorly11. It also suggests that, when a genome-wide

study of the disease of interest is not available, targeting genes
implicated in a model organism may be as effective as targeting genes
implicated in a comorbid, phenotypically similar human disorder.
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The five genes most strongly implicated in canine CD and
murine-compulsive grooming (CDH2, CTNNA2, ATXN1, PGCP,
and Sapap3) have significantly lower p-values than the other
603 sequenced genes (Wilcoxon unpaired, one-sided p= 2.6 × 10−4).
The difference becomes more significant when only rare variants
are tested (Wilcoxon unpaired, one-sided p= 3.2 × 10−5) (Fig. 1c).
This is consistent with the hypothesis that severe disease-causing
variants, rare in humans due to negative selection, may persist at
higher frequencies in model organisms where selection is relaxed.

Applying the burden test across multiple genes with shared
biological functions, we identified gene sets with high-variant load
in OCD patients. We tested all 989 Gene Ontology (GO) sets that
are at least weakly enriched (enrichment p< 0.1) in our
608 sequenced genes (Supplementary Data 2) and found two
with high-variant burdens: “GO:0010942 positive regulation of
cell death” (uncorrected p= 3 × 10−4, corrected p< 0.03) and
“GO:0031334 positive regulation of protein complex assembly”
(uncorrected p= 7 × 10−4, corrected p< 0.06). Overlaying the
burden test results onto the GO network topology highlights
functional themes linking the enriched gene sets: regulation of
protein complex assembly and cytoskeleton organization; neuro-
nal migration; action potential; and cytoplasmic vesicle (Supple-
mentary Fig. 6).

Validation of candidate variants by genotyping. We genotyped
the top 67 candidate functional variants from the five significant
genes, including 42 rare SNPs (AF< 0.01), in the pooled-
sequencing cohort (Fig. 3a). This yielded, after QC, individual
genotypes for 63 SNPs in 571 cases and 555 controls (98% of the
cohort; genotyping rate >0.94 for all SNPs). We see near perfect
correlation with the pooled sequencing for both allele frequencies
(Fig. 3b, c; OCD AF, Pearson’s ρ= 0.999, p= 2.7 × 10−89;

Control AF, Pearson’s ρ= 0.999, p= 2.5 × 10−89) and the AF
differences (Fig. 3d; OCD AF–control AF, Pearson’s ρ= 0.93,
p= 4.8 × 10−28).

We genotyped these 63 SNPs in an independent cohort of 727
cases and 1105 controls of European ancestry, and found strong
correlation with the first genotyping cohort for both AF (Fig. 3e, f;
OCD AF, Pearson’s ρ= 0.999, p= 1.0 × 10−82; control AF,
Pearson’s ρ= 0.999, p= 1.8 × 10−94) and AF differences (Fig. 3g;
OCD AF–control AF, Pearson’s ρ= 0.4, p= 0.001). The risk allele
from the first cohort is significantly more common in cases in the
second cohort (Wilcoxon paired one-sided test for 63 SNPs,
p= 0.005). More specifically, of 54 SNPs that had a higher
frequency of the non-reference allele in cases in the first cohort,
61% also had a higher frequency of the non-reference allele in
cases in the second cohort. The 33 SNPs that failed to validate in
either of the two cohorts had smaller allele-frequency differences
in the first cohort (one-sided unpaired t-test p= 0.02).

In summary, the allele-frequency analysis described above
identified four genes: NRXN1, HTR2A, CTTNBP2, and REEP3.
LIPH is excluded because its association is likely slightly inflated
by LD and the genotyping in the second cohort did not reproduce
as clearly. To validate the associations, we employed distinct
strategies depending on whether the association was driven by
coding (NRXN1 and HTR2A) or regulatory variation (CTTNBP2
and REEP3).

Functional validation of regulatory variants using electrophoretic
mobility shift assay. For CTTNBP2 and REEP3, regulatory var-
iants give a far stronger burden signal than does testing for either
coding variants or all variants (Fig. 1b). Furthermore, the three
largest effect variants in the combined cohort (1298 OCD cases
and 1660 controls) alter enhancer elements in these two genes:

Table 2 Candidate regulatory variants

Chr:pos Ref Alt rsID Transcription factor EMSA OR GERP

CTTNBP2
chr7:117356081 T G None CTCF (GB, NB), RAD21 (NB, ESC) c Privatee b

chr7:117390966 T Del None CTCF (NB, CB), RAD21 (ESC) d Privatee b

chr7:117417559 A G rs75322384 b c 2.2 Conserved
chr7:117421141 C A None b d Privatee Conserved
chr7:117431202a C A None b b Privatee Conserved
chr7:117431704a C T None RAD21 (ESC) d Privatee Conserved
chr7:117431879a G A None b c Privatee b

chr7:117450810 C T rs34868515 SP1, YY1, EP300, JUND, TCF12, HDAC2, NANOG, BCL11A,
TEAD4 (all ESC)

b Private b

chr7:117456904 C T rs12706157 b c 1.06 b

chr7:117457141 G C rs13242822 b b 1.04 b

chr7:117468056 C T rs2067080 EP300 (NB), FOXP2 (NB), JUND (ESC) b 1.1 Conserved
chr7:117468334 T C rs2111209 EP300 (NB), FOXP2 (NB), JUND (ESC) b 1.04 b

REEP3
chr10:65307923 A G rs78109635 GATA2 (NB) c 1.01 Diverged
chr10:65332906 T C rs76646063 GATA3, GATA2, EP300 (all NB) c 3.7 Conserved
chr10:65387644 C G rs56311840 b b Privatee b

chr10:65387722 C Del None b d Privatee b

chr10:65388750 G A None SIN3A (NB), POLR2A (NB), REST (NB), USF1 (ESC), EP300
(NB)

b Privatee b

We identified twelve candidate regulatory SNPs in CTTNBP2, including: seven intronic SNPs with DHS signals in neural stem cells (SK-N-MC) or neuroblasts (SK-N-SH, BE2-C, SH-SY5Y, SK-N-SH-RA),
four of which also overlap TF-binding sites in the brain-derived cell lines; two intronic SNPs near the top DHS variants and potentially altering the same regulatory elements; and three coding SNPs that lie
within or near regulatory marks (Supplementary Fig. 7b). We also identified five candidate regulatory SNPs in or near REEP3, including: one intronic SNP (chr10:65307923) in a DHS and GATA2 TFBS
active in neuroblasts; one intronic SNP (chr10:65332906) that alters a DHS active in neural stem cells and GATA2, GATA3, and EP300 binding sites active in neuroblasts; three noncoding SNPs
(chr10:65387644, chr10:65387722, and chr10:65388750) that cluster ~3 kb upstream in a DHS active in multiple brain-related cells, including neuroblasts, and are seen only in OCD patients in our
pooled sequencing (Supplementary Fig. 7c).
aCoding; EMSA, electrophoretic mobility shift assay
bNo change
cStrong TF-DNA binding change
dWeak change; GB, glioblast; NB, neuroblast; ESC, embryonic stem cell; CB, cerebellum; “Transcription factor” column shows the TF bindings to the regions and brain/developmental cell types where the
signals are found. OR (odds ratio) column reports data in the combined set, unless noted with
eIndicating data from sequencing
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chr7:117358107 in CTTNBP2 (OR= 5.2) and chr10:65332906
(OR= 3.7) and chr10:65287863 (OR= 3.2) in REEP3 (Supple-
mentary Data 3). Using ENCODE and Roadmap Epigenomics
data, we identified 17 candidate SNPs in CTTNBP2 and REEP3,
likely to alter transcription factor-binding sites (TFBS) and/or
disrupt chromatin structure in brain-related cell types26, 29. All 17
alter enhancers or transcription associated loci active in either the
substantia nigra (SN), which relays signals from the striatum to
the thalamus, and/or the dorsolateral prefrontal cortex (DL-PFC),
which sends signals from the cortex to the striatum/thalamus
(Fig. 3h, i). Both regions act in the CSTC pathway implicated by
neurophysiological and genetic studies in OCD (Fig. 3j)30.

We functionally tested 17 candidate regulatory SNPs in REEP3
and CTTNBP2 (Table 2; Supplementary Fig. 7b). We introduced
each into a human neuroblastoma cell line (SK-N-BE(2)) and
assessed transcription factor binding using electrophoretic
mobility shift assays (EMSA). Both DHS SNPs in REEP3, three
of seven DHS SNPs in CTTNBP2, and one non-DHS variant in
CTTNBP2 clearly alter specific DNA-protein binding (Fig. 4a, b).
We see weak evidence of differential binding for one upstream

DHS SNP in REEP3, two DHS SNPs in CTTNBP2, and one non-
DHS SNP in CTTNBP2 (Supplementary Fig. 8).

The high rate of functional validation by EMSA demonstrates
that screening using both regulatory and evolutionary informa-
tion is remarkably effective in identifying strong candidate OCD-
risk variants. In total, eight of 12 tested DHS SNPs (67%) show
evidence of altered protein binding, despite testing a single cell
line at a single time point under standard-binding conditions
(Table 2). This includes two SNPs with high ORs in the full
genotyping data sets that strongly disrupt specific DNA-protein
binding (chr10:65332906 with OR= 3.7; chr7:117417559 with
OR= 2.2). Two of five non-DHS SNPs (40%) also show altered
binding, illustrating that DHS mark alone is a powerful but
imperfect predictor of regulatory function. Both of these SNPs
alter highly constrained elements (SiPhy score 8.7), whereas only
one of the three non-DHS SNPs is constrained. Although this is a
small data set, our results suggest that incorporating both DHS
and conservation may identify functional regulatory variants with
greater specificity, an observation consistent with previously
published research31.
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Fig. 4 Top genes validate in functional assays in context of known protein structure and in comparison to ExAC. EMSA of all 17 candidate regulatory
variants in a REEP3 and b CTTNBP2 reveals that six variants either decrease (black arrows) or increase (red) protein binding when the variant sequence
(MT) is compared with the reference allele (WT). The signal disappears when competing unlabeled probes (Cold+) are added, confirming the specificity of
the DNA-protein binding. Raw images as well as EMSA results for experimental replicates and for other candidate regulatory variants that showed weak-
binding changes are shown in Supplementary Fig. 8. c All seven of the candidate missense variants in NRXN1, shown here as colored elements, alter the
extracellular postsynaptic-binding region of our top-scoring protein isoform NRXN1a-2 43, 59, 60. Of the six extracellular LNS (laminin, nectin, sex-hormone-
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Pn
i¼1

Oi�Eið Þ2
Ei , where n= total number of isoforms, Oi= number of non-reference

alleles observed in isoform i, Ei= number of non-reference alleles expected from ExAC in isoform i) between OCD vs. ExAC comparison and control vs.
ExAC comparison
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Validation of coding variants using ExAC. In contrast to the
regulatory-variant burden found in CTTNBP2 and REEP3,
NRXN1 and HTR2A showed significant PolyStrat signals when
only coding variants are considered. Of 12 candidate coding SNPs
in NRXN1, seven are missense (Table 3). Four of these are SNPs
private to OCD cases, and the other three are rare (AF in controls
0.0009–0.0036). All seven change amino acids in laminin G or
EGF-like domains important for postsynaptic binding, potentially
affecting the involvement of NRXN1 in synapse formation and
maintenance (Fig. 4c). Of the three candidate coding SNPs in
HTR2A, two (one missense and one synonymous) are in the last
coding exon, and one (missense) is the cytoplasmic domain with
a PDZ-binding motif, potentially affecting binding affinity or
specificity32.

We sought to improve our statistical power by combining our
pooled-sequencing data with publicly available ExAC data33.
Using only our data, the associations of CTTNBP2, REEP3,
NRXN1, and HTR2A with OCD are experiment-wide significant,
but do not reach the genome-wide significance threshold
p< 2.5 × 10−6 (~20,000 human genes), with the strongest associa-
tion, to NRXN1, at p= 5.1 × 10−5 (cohort 1 and 2; Fisher’s
combined p). For the two genes with a burden of coding variants
(NRXN1 and HTR2A), we used ExAC to assess variant burden in
OCD cases compared with 33,370 non-Finnish Europeans. Such a
comparison was not possible for CTTNBP2 and REEP3, for which
associated variants are predominantly noncoding and thus not
assayed in ExAC.

To assess the significance of the variant enrichment in each
gene, we used an isoform-based test that incorporates a within-
gene comparison to assess significance, effectively controlling for
inflation due to the extremely large size of the ExAC cohort34

(Supplementary Methods). Of 542 genes with more than one
isoform, we saw no significant difference between our control
data and ExAC for over 90% (493 genes had corrected p> 0.05).
Focusing on the subset of 66 genes with nominally significant
PolyStrat scores, NRXN1 had the largest difference between cases

and ExAC (χ2 = 82.3, df= 16, uncorrected p= 6.37 × 10−11;
corrected p= 1.27 × 10−6) and no difference between controls
and ExAC (χ2= 10.5, df= 16, uncorrected p= 0.84) (Fig. 4d). No
previous findings in OCD genetics have reached this level of
significance despite >100 candidate gene studies35, a dozen
linkage studies30, and two GWAS2, 3. HTR2A, while enriched for
coding variants, had only two SNPs in cases, providing
insufficient information for the isoform test.

The significant association of NRXN1 reflects an exceptional
burden of variants in one of its 17 Ensembl isoforms. NRXN1a-2,
which contains all 12 candidate coding SNPs, had the largest
deviation between observed and expected variant counts, with a
residual at least 1.4× higher than any other isoform (NRXN1a-2
= 22.3, NRXN1-001= 16.3; median= 5.15). After adjusting for
the residuals from the “null” control data and ExAC comparison,
the NRXN1a-2 residual is still 1.3× higher (OCD residual/control
residual NRXN1a-2= 5.34, NRXN1-014 = 4.04).

Discussion
By analyzing sequencing data for 608 OCD candidate genes, then
prioritizing variants according to functional and conservation
annotations, we identified four genes with a reproducible variant
burden in OCD cases. Two genes, NRXN1 and HTR2A (Table 3),
have a burden of coding variants, and the other two, CTTNBP2
and REEP3 (Table 2), have a burden of conserved regulatory
variants. Notably, all four act in neural pathways linked to OCD,
including serotonin and glutamate signaling, synaptic con-
nectivity, and the CSTC circuit6, offering new insight into the
biological basis of compulsive behavior (Fig. 5).

We used three independent approaches to validate our find-
ings: (1) For the top candidate SNPs, allele-frequency differences
from sequencing data were confirmed by genotyping of both the
original cohort (Fig. 3d) and a larger, independent cohort
(Fig. 3g). (2) For the two genes with a burden of coding variants
(NRXN1 and HTR2A), comparison of our data to 33,370
population-matched controls from ExAC33 revealed genome-

Table 3 Coding variants in NRXN1 and HTR2A

Chr:pos Ref Alt rsID OCD allele
freq.

Ctrl allele
freq.

ExAC allele
freq.

Amino acid
change

Candidate variant from
sequencing

NRXN1
chr2:50149133 C T rs113380721 0.0019 0.0030 0.0033 Syn No
chr2:50149214 A G rs112536447 0.0001 0.0010 0.0003 Syn No
chr2:50280604 T C rs79970751 0.0088 0.0070 0.0058 Syn No
chr2:50463984 G A rs147580960 0.0009 0.0006 0 Syn Yes
chr2:50464065 C T rs80094872 0.0009 0.0003 0a Syn Yes
chr2:50699479 G A rs75275592 0.0009 0.0013 0.0010 Syn No
chr2:50723068 G A rs56402642 0.0034 0.0001 0.0018 Syn Yes
chr2:50724642 A G none 0.0009 0 0 I>T Yes
chr2:50724745 G T rs201818223 0.0017 0.0009 0.0011 L>M Yes
chr2:50733745 G C rs147984237 0.0017 0 1.5 × 10−5 Syn Yes
chr2:50765412 G T rs56086732 0.0089 0.0028 0.0056 L>I Yes
chr2:50765589 T C rs200074974 0.0016 0 0.0011 I>V Yes
chr2:50779791 C T None 0.0008 0 0a A>T Yes
chr2:50779943 T C None 0.0009 0 0a N>S Yes
chr2:50847195 G A rs78540316 0.0077 0.0036 0.0043 P>S Yes
chr2:50850686 G A rs2303298 0.0107 0.0013 0.0038 Syn Yes
HTR2A
chr13:47409048 G A rs6308 0.0036 0.0012 0.0023 A>V Yes
chr13:47409701 G A rs141413930 0.0020 0.0012 0.0026a Syn Yes
chr13:47409149 T A rs35224115 0.0019 0.0047 0.0044 Syn No
chr13:47466622 G A rs6305 0.0386 0.0225 0.027b Syn Yes

ExAC allele freq. shown for NFE population
aExcluded from ExAC analysis because of low-confidence call from pooled sequencing
bExcluded from ExAC analysis because of frequency >0.01
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wide-significant association of NRXN1 with OCD. (3) For the two
genes with the burden of regulatory variants (REEP3 and
CTTNBP2), more than one-third of candidate SNPs altered
protein/DNA binding in a neuroblastoma cell line (Fig. 4a).

Comparison of our approach to existing methods illustrates its
unique advantages, and offers a deeper understanding of how its
two key features—targeted sequencing, and incorporation of
functional and conservation metrics—permit identification of
significantly associated genes using a cohort smaller even than
those that have previously failed to yield significant results.

Targeted sequencing captures both coding and regulatory
variants, and both common and rare variants, at a fraction of the
cost of whole-genome sequencing (WGS). For the modest-size
cohort in this study, WGS would cost ~$2.5M, 40-fold more than
our pooled-sequencing approach. Even without pooling, our
targeted-sequencing costs fourfold less than WGS. Whole-exome
sequencing would cost approximately the same as targeted
sequencing, but misses the regulatory variants explaining most
polygenic trait heritability21. By using existing information on
OCD and related diseases to prioritize a large set of genes, then
performing targeted sequencing of functional elements, our
approach enhances causal-variant detection and thus statistical
power, although it misses OCD-associated genes not included as
candidates, and potential distant regulatory elements.

The capacity to detect associations to rare variants is especially
critical for study of diseases that, like OCD, may reduce fitness, as
negative selection limits inheritance of deleterious variants36.
Genotype array data sets, and even imputed data sets, miss many
rare variants. In our data set, 80% of variants driving significant
associations have allele frequencies <0.05; one of the densest
genotyping arrays available, the Illumina Infinium Omni5 (4.3M
markers) contains only half of these variants (Supplementary

Data 1)2, 3. In addition, 60% of our variants have allele fre-
quencies <0.01, and would be missed even through imputation
with 1000 Genomes and UK10K37.

Our new analytical method, Poly Strat, analyzes targeted-
sequencing data capturing all variants, and leverages public
evolutionary and regulatory data to increase power. PolyStrat first
filters out variants that are less likely to be functional, then per-
forms gene-burden tests. In contrast to gene-based approaches
focusing on ultra-rare, protein-damaging variants, PolyStrat
considers variants of diverse frequencies, gaining power to
identify genes with excess variants in cases.

PolyStrat is particularly advantageous when applied to studies
with smaller cohorts. By testing for association at the gene level, it
requires statistical correction only for the ~20,000 genes in the
genome. It increases power further by using targeted-sequencing
data to capture nearly all variation, including variants with higher
allele frequencies and/or larger effect sizes, in regions that are
coding or evolutionarily constrained, and enriching for causal
variants by removing ~33% of variants unlikely to be func-
tional38. PolyStrat tests ~82 times more functional variants than
PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/), which focu-
ses on protein-damaging variants (27,626 vs. 335 in our data).

Our PolyStrat results are consistent with expectations from
simulations, which suggest that 200–700 cases should yield 90%
power to detect associated genes with allele frequencies and effect
sizes similar to our four genes39. Specifically, we would achieve
90% power to detect associations to NRXN1 (combined AF=
0.022, OR= 2.4) with ~600 cases, to HTR2A (combined AF=
0.03, OR= 1.56) with ~700 cases; to REEP3 (combined AF= 0.04,
OR= 2.11) with ~200 cases, and to rare (AF< 0.01) variants in
CTTNBP2 (combined AF= 0.003, OR= 4.7) with ~500 cases.

Previous research on the four genes identified by PolyStrat
revealed that all are expressed in the striatum, a brain region
linked to OCD (http://human.brain-map.org/). All four genes are
involved in pathways relevant to brain function, and harbor
variants that could alter OCD risk (Table 4).

NRXN1 encodes the synapse cell-adhesion protein neurexin 1α,
a component of cortico-striatal neural pathway40, 41 implicated in
ASD and other psychiatric diseases42, and functionally related to
genes associated with OCD (CDH9/CDH10)3, 8, 9 and canine CD8,

9 (CDH2) (Fig. 5). NRXN1 isoforms are implicated in distinct
neuropsychiatric disorders. The non-synonymous variants in the
NRXN1a-2 isoform (Fig. 4c) may alter synaptic function by dis-
rupting cellular localization or interactions with binding partners,
including neurexophilins43. The five synonymous candidate var-
iants in likely regulatory elements may affect protein folding by
disrupting post-transcriptional regulation, seen in other neu-
ropsychiatic disorders44.

The synaptic plasticity gene REEP3, also implicated in ASD45,
encodes a protein that shapes tubular endoplasmic reticulum
membranes found in highly polarized cells, including neurons46.
The two EMSA-validated REEP3 variants change regulatory ele-
ments active in the cortico-striatal neural pathway (Fig. 3h) and
bound by multiple TFs (Table 2) including GATA2, which may
be required to actuate inhibitory GABAergic neurons47. Thus,
variants disrupting GATA2 binding could change the balance
between excitatory and inhibitory neurons in the CSTC circuit
(Fig. 3j)30.

CTTNBP2 regulates postsynaptic excitatory synapse formation.
All four EMSA - confirmed variants in CTTNBP2 alter epigenetic
marks active in the key structures of the cortico-striatal neural
pathway48 (Table 2; Fig. 3h), potentially affecting the expression
of this critical gene. CTTNBP2 proteins interact with both pro-
teins encoded by STRN (striatin), which approached experiment-
wide significance in this study (uncorrected p= 0.0016, corrected
p< 0.1; Fig. 1b) and the canine CD gene CDH2 (Fig. 5).
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HTR2A encodes a G-protein-coupled serotonin receptor
expressed throughout the central nervous system, including in the
prefrontal cortex, and has been implicated in ASD and OCD35. A
related serotonin-receptor cluster (HTR3C/HTR3D/HTR3E) is
associated with severe canine CD49(Fig. 5). The three
coding variants found in HTR2A may alter its binding affinity
(Table 3)32, and one of the three, a rare missense variant (rs6308;
AF= 0.004 in 1000G CEU population) is perfectly linked (D′= 1;
http://raggr.usc.edu) to a common variant (rs6314) associated
with response to SSRIs50.

Taken together, our top four associated genes and our pathway
analysis implicate three classes of neuronal functions in OCD, as
described below.

First, synaptic cell-adhesion molecules help establish and
maintain contact between the presynaptic and postsynaptic
membrane, and are critical for synapse development and neural
plasticity. NRXN1 encodes a cell-adhesion molecule pre-
dominantly expressed in the brain, and CTTNBP2 regulates
cortactin, another such molecule, echoing earlier findings linking
cell-adhesion genes to compulsive disorders in dogs (CDH2 and
CTNNA2), mice (Slitrk5), and humans (DLGAP1, PTPRD and
CDH9/CDH10)2, 3, 8, 51 (Fig. 5). In our pathway analysis, “reg-
ulation of protein complex assembly” and “cytoskeleton organi-
zation” were enriched for variants in OCD patients.

Second, OCD may result from an imbalance of excitatory
glutamate and inhibitory GABAergic neuron differentiation30

(Fig. 3j), a process that involves both NRXN152 and REEP353

(Table 4), as well as PTPRD, a top OCD GWAS candidate3. We
also find an overall burden of variants in genes regulating cell
death and apoptosis (Supplementary Data 2) and in telencephalic
tangential migration, a neuronal migration event which forms
connections between the key structures of CSTC circuit54.

Third, SSRIs are the most effective available OCD treatment,
suggesting a role for serotonergic pathways in disease. HTR2A
encodes a serotonin receptor, and allelic variation in HTR2A
alters response to SSRIs (Table 4)50. In addition, both REEP3 and
CACNA1C, which score high in this study (Fig. 1), also

significantly associate with schizophrenia and act in calcium
signaling, a downstream pathway of HTR2A55–57. Meta-analysis
of >100 OCD genetic association studies found strong association
to both HTR2A and the serotonin transporter gene SLC6A435. In
dogs, a serotonin-receptor locus is associated with severe CD49.

Our findings suggest broad principles that could guide studies
of other polygenic diseases. We discovered that genes associated
in selectively bred model organisms are more likely to contain
rare, highly penetrant variants. The five genes we found to be
most strongly associated with compulsive behaviors in dog and
mouse (CDH2, CTNNA2, ATXN1, PGCP, and Sapap3) were
significantly more enriched for rare variants in human patients
than the other 603 genes targeted, although they did not indivi-
dually achieve significance (Fig. 1c). We propose that the
enrichment of rare variants in humans reflects natural selective
forces limiting the prevalence of severe disease-causing variants.
Such forces are less powerful in selectively bred animal popula-
tions. Because risk variants identified through animal models are
anticipated to be rare in humans, replication will require either
family-based studies, or cohorts of magnitude not currently
available.

We also find that the ratio of coding to regulatory variants is
positively correlated with a gene’s developmental importance.
Although single-gene p-values from PolyStrat tests are positively
correlated across variant categories, as is expected given overlaps
between different variant categories (Fig. 1a; Supplementary
Fig. 9), this pattern breaks down for our four significantly
associated genes. NRXN1 and HTR2A, which have burdens of
coding variants, score poorly on regulatory-variant tests;
CTTNBP2 and REEP3, which have burdens of regulatory variants,
score poorly in coding-variant tests (Fig. 1b). This is consistent
with the ExAC study showing that genes critical to viability or
development do not tolerate major coding changes33. In that
study, the authors infer that CTTNBP2 and REEP3 would be
intolerant of homozygous loss of function variants (pRec=
0.99999015 and pRec= 0.953842585, respectively), whereas
HTR2A (pRec= 0.225555783) and, most notably, NRXN1 (pRec

Table 4 Summary of top genes

NRXN1 REEP3 CTTNBP2 HTR2A

Gene product/
brain relevance

Synaptic cell-adhesion protein/
synapse functioning and
development in the cortical-
striatal pathway40, 41

Microtubule-binding protein/
possible role in synaptic
plasticity, calcium signaling,
shaping tubular ER membranes
in neurons46

Cortical actin (cortactin)-
binding protein/synaptic
maintenance48

G-protein-coupled serotonin
receptor/cortical neuron
excitation63

Disease relevance Neurodevelopmental disorders
incl. ASD42, 64

ASD45 Interacts with CDH2,
implicated in canine
CD8, 9, 65

ASD, OCD35, canine CD (5-HT3
receptors)49

Reason for
inclusion as
candidatea

(1) Model (mouse) organism
gene; (2) ASD gene

(2) ASD gene (1) Model (mouse)
organism gene

(1) Model (dog) organism gene;
(2) human candidate—SSRI
target

Type of burden
identified

Coding variants—missense
variants over-represented to
one isoform, NRXN1a-2

Regulatory variants Regulatory variants Coding variants—missense
variant in perfect linkage to a
common variant rs6314
associated with response to
SSRIs50

Validation of
variants identified
in present study

By comparison to ExAC—
genome-wide-significant
association

By EMSA—disrupt regulatory
elements bound by various TF,
including GATA2

By EMSA—alter epigenetic
marks active in the cortico-
striatal pathway

By genotyping independent
cohort; too few polymorphic
sites for validation with ExAC

Hypothesized
impact of variants
identified

Inaccurate cellular localization
of NRXN1, or altered binding
competition to its partner,
modifying synaptic adhesion43

REEP3 expression in GABA
neurons inhibited by variants
that reduce GATA2 binding47,
leading to excitatory/inhibitory
imbalance in CSTC circuit30

Altered CTTNBP2
expression in cortical-
striatal circuit in brain66

Altered binding affinity of
HTR2A, changing the activation
of downstream calcium signaling
in neurons32

aFor explanation of each category, see “Results” section
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= 5.13 × 10−5) would be far more tolerant. Our finding of
enrichment for regulatory variants in CTTNBP2 and REEP3
suggests that these genes may tolerate variants with more subtle
functional impacts, such as expression differences in specific cell
types or developmental stages.

Technological advances in high-throughput sequencing bring
increased focus on identifying causal genetic variants as a first
step toward targeted disease therapies58. However, existing
approaches have notable limitations. WGS is prohibitively
expensive in large cohorts, whereas cost-saving whole-exome
sequencing does not capture the regulatory variants underlying
complex diseases21. Leveraging existing genomic resources can
increase power to find causal variants through meta-analysis and
imputation, but these resources are heavily biased towards a few
populations. Without new approaches, advances in precision
medicine will predominantly benefit those of European descent.

Here, we describe an approach that combines prior findings,
targeted sequencing, and a new analytic method to efficiently
identify genes and individual variants associated with complex
disease risk. In a modest-size cohort of OCD cases and controls
we find associations driven by both coding and regulatory var-
iants, highlighting new potential therapeutic targets. Our method
holds promise for elucidating the biological basis of complex
disease, and for extending the power of precision medicine to
previously excluded populations.

Methods
Study design. We designed and carried out the study in two phases. In the first,
discovery phase, we performed targeted sequencing of 592 individuals with DSM-
IV OCD and 560 controls of European ancestry, and tested association for OCD at
single variant-level, gene-level, and pathway-level. In the second, validation phase,
we employed three distinct analyses. (1) We genotyped both the original cohort
and a second, independent cohort containing 1834 DNA samples (729 DSM-IV
OCD cases and 1105 controls) of European ancestry, including a total of 2986
individuals (1321 OCD cases and 1665 controls) to confirm the observed allele
frequencies in the discovery phase. (2) We compared our sequencing data with
33,370 population-matched controls from ExAC to confirm the gene-based burden
of coding variants as well as allele frequencies. (3) We performed EMSA to test
whether our candidate variants have regulatory function. Uses of biospecimens in
this study were reviewed and approved by either the Broad's Office of Research
Subject Protection, or the Partners HealthCare Human Research Committee.
Informed consent was obtained from all subjects included in our study.

Targeted regions. We targeted 82,723 evolutionarily constrained regions in and
around 608 genes, which included all regions within 1 kb of the start and end of
each of 608 targeted genes with SiPhy evolutionarily constraint score >7, as well as
all exons22. For the intergenic regions upstream and downstream of each gene, we
used constraint score thresholds that became more stringent with distance from the
gene.

Pooled sequencing and variant annotation. Groups of 16 individuals were
pooled together into 37 case pools and 35 control pools and bar-coded. Targeted-
genomic regions were captured using a custom NimbleGen hybrid capture array
and sequenced by Illumina GAII or Illumina HiSeq2000. Sequencing reads were
aligned and processed by Picard analysis pipeline (http://broadinstitute.github.io/
picard/). Variants and AFs were called using Syzygy17 and SNVer23. We used
ANNOVAR25 to annotate variants for RefSeq genes (hg19), GERP scores,
ENCODE DHS cluster, and 1000 G data.

Genotyping. SNP genotyping was performed using the Sequenom MassARRAY
iPLEX platform. The resulting data were analyzed using PLINK1.9 (www.
cog-genomics.org/plink2).

EMSA. For each allele of the tested variants, pairs of 5′-biotinylated oligonucleo-
tides were obtained from IDT Inc. (Supplementary Data 4). Equal volumes of
forward and reverse oligonucleotides (1 pmol/µl) were mixed and heated at 95°C
for 5 min and then cooled to room temperature. Annealed probes were incubated
at room temperature for 30 min with SK-N-BE(2) nuclear extract (Active Motif).
The remaining steps followed the LightShift Chemiluminescent EMSA Kit protocol
(Thermo Scientific).

Statistical analysis. For gene-association/pathway-association, we used the sum of
the differences of non-reference allele rates between cases and controls per gene as
test statistic, and calculated the probability of observing a test statistic by chance
from 10,000 permutations. Multiple testing was empirically corrected using “minP”
procedure. See Supplementary Methods for details.

Code availability. The code used in this study was obtained from R package
Rplinkseq and PLINK1.9.

Data availability. All data presented in this study are accessible at: https://data.
broadinstitute.org/OCD_NatureCommunications2017/.

Received: 25 January 2017 Accepted: 1 August 2017

References
1. Pauls, D. L. The genetics of obsessive-compulsive disorder: a review. Dialogues

Clin. Neurosci. 12, 149–163 (2010).
2. Stewart, S. E. et al. Genome-wide association study of obsessive-compulsive

disorder. Mol. Psychiatry 18, 788–798 (2013).
3. Mattheisen, M. et al. Genome-wide association study in obsessive-compulsive

disorder: results from the OCGAS. Mol. Psychiatry 20, 337–344 (2014).
4. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in

Sapap3-mutant mice. Nature 448, 894–900 (2007).
5. Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent

OCD-like behavior. Science 340, 1234–1239 (2013).
6. Ting, J. T. & Feng, G. Neurobiology of obsessive-compulsive disorder: insights

into neural circuitry dysfunction through mouse genetics. Curr. Opin.
Neurobiol. 21, 842–848 (2011).

7. Karlsson, E. K. & Lindblad-Toh, K. Leader of the pack: gene mapping in dogs
and other model organisms. Nat. Rev. Genet. 9, 713–725 (2008).

8. Tang, R. et al. Candidate genes and functional noncoding variants identified in
a canine model of obsessive-compulsive disorder. Genome Biol. 15, R25 (2014).

9. Dodman, N. H. et al. A canine chromosome 7 locus confers compulsive
disorder susceptibility. Mol. Psychiatry 15, 8–10 (2010).

10. Sullivan, P. F., Daly, M. J. & O’Donovan, M. Genetic architectures of psychiatric
disorders: the emerging picture and its implications. Nat. Rev. Genet. 13,
537–551 (2012).

11. Farrell, M. S. et al. Evaluating historical candidate genes for schizophrenia. Mol.
Psychiatry 20, 555–562 (2015).

12. Sobrin, L. et al. Candidate gene association study for diabetic retinopathy in
persons with type 2 diabetes: the Candidate gene Association Resource (CARe).
Invest. Ophthalmol. Vis. Sci. 52, 7593–7602 (2011).

13. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536,
41–47 (2016).

14. D’Gama, A. M. et al. Targeted DNA sequencing from autism spectrum
disorder brains implicates multiple genetic mechanisms. Neuron 88, 910–917
(2015).

15. Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer’s disease genetics: the
implications of systematic meta-analyses. Nat. Rev. Neurosci. 9, 768–778
(2008).

16. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence
variations in PCSK9, low LDL, and protection against coronary heart disease.
N. Engl. J. Med. 354, 1264–1272 (2006).

17. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare
variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073
(2011).

18. Gutierrez-Achury, J. et al. Fine mapping in the MHC region accounts for
18% additional genetic risk for celiac disease. Nat. Genet. 47, 577–578
(2015).

19. Roth, E. M., McKenney, J. M., Hanotin, C., Asset, G. & Stein, E. A. Atorvastatin
with or without an antibody to PCSK9 in primary hypercholesterolemia. N.
Engl. J. Med. 367, 1891–1900 (2012).

20. Warr, A. et al. Exome sequencing: current and future perspectives. G3 5,
1543–1550 (2015).

21. Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

22. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary
constraint using 29 mammals. Nature 478, 476–482 (2011).

23. Wei, Z., Wang, W., Hu, P., Lyon, G. J. & Hakonarson, H. SNVer: a statistical
tool for variant calling in analysis of pooled or individual next-generation
sequencing data. Nucleic Acids Res. 39, e132 (2011).

24. Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences.
Nucleic Acids Res. 42, D756–63 (2014).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00831-x ARTICLE

NATURE COMMUNICATIONS |8:  774 |DOI: 10.1038/s41467-017-00831-x |www.nature.com/naturecommunications 11

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://www.cog-genomics.org/plink2
http://www.cog-genomics.org/plink2
https://data.broadinstitute.org/OCD_NatureCommunications2017/
https://data.broadinstitute.org/OCD_NatureCommunications2017/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


25. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38,
e164 (2010).

26. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57–74 (2012).

27. Davydov, E. V. et al. Identifying a high fraction of the human genome to be
under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025
(2010).

28. The 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature 526, 68–74 (2015).

29. Roadmap Epigenomics Consortium. et al. Integrative analysis of 111 reference
human epigenomes. Nature 518, 317–330 (2015).

30. Pauls, D. L., Abramovitch, A., Rauch, S. L. & Geller, D. A. Obsessive-
compulsive disorder: an integrative genetic and neurobiological perspective.
Nat. Rev. Neurosci. 15, 410–424 (2014).

31. Kheradpour, P. et al. Systematic dissection of regulatory motifs in 2000
predicted human enhancers using a massively parallel reporter assay. Genome
Res. 23, 800–811 (2013).

32. Becamel, C. et al. The serotonin 5-HT2A and 5-HT2C receptors interact with
specific sets of PDZ proteins. J. Biol. Chem. 279, 20257–20266 (2004).

33. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291 (2016).

34. Schneider, J. W. Caveats for using statistical significance tests in research
assessments. J. Informetr. 7, 50–62 (2013).

35. Taylor, S. Molecular genetics of obsessive-compulsive disorder: a
comprehensive meta-analysis of genetic association studies. Mol. Psychiatry 18,
799–805 (2013).

36. Park, J.-H. et al. Distribution of allele frequencies and effect sizes and their
interrelationships for common genetic susceptibility variants. Proc. Natl Acad.
Sci. USA 108, 18026–18031 (2011).

37. Huang, J. et al. Improved imputation of low-frequency and rare variants using
the UK10K haplotype reference panel. Nat. Commun. 6, 8111 (2015).

38. Wu, M. C. et al. Rare-variant association testing for sequencing data with the
sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

39. Zuk, O. et al. Searching for missing heritability: designing rare variant
association studies. Proc. Natl Acad. Sci. USA 111, E455–64 (2014).

40. de Wit, J. et al. LRRTM2 interacts with Neurexin1 and regulates excitatory
synapse formation. Neuron 64, 799–806 (2009).

41. Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-
receptor modulation of striatal glutamatergic signaling in striatal medium spiny
neurons. Trends Neurosci. 30, 228–235 (2007).

42. Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive
disease. Nature 455, 903–911 (2008).

43. Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with
schizophrenia. Hum. Mol. Genet. 18, 988–996 (2009).

44. Takata, A., Ionita-Laza, I., Gogos, J. A., Xu, B. & Karayiorgou, M. De novo
synonymous mutations in regulatory elements contribute to the genetic
etiology of autism and schizophrenia. Neuron 89, 940–947 (2016).

45. Castermans, D. et al. Identification and characterization of the TRIP8 and
REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism. Eur.
J. Hum. Genet. 15, 422–431 (2007).

46. Blackstone, C., O’Kane, C. J. & Reid, E. Hereditary spastic paraplegias:
membrane traffic and the motor pathway. Nat. Rev. Neurosci. 12, 31–42 (2011).

47. Kala, K. et al. Gata2 is a tissue-specific post-mitotic selector gene for midbrain
GABAergic neurons. Development 136, 253–262 (2009).

48. Chen, Y. K. & Hsueh, Y. P. Cortactin-binding protein 2 modulates the mobility
of cortactin and regulates dendritic spine formation and maintenance. J.
Neurosci. 32, 1043–1055 (2012).

49. Dodman, N. H. et al. Genomic risk for severe canine compulsive disorder, a dog
model of human OCD. Int. J. Appl. Res. Vet. Med. 14, 1–18 (2016).

50. Porcelli, S. et al. Pharmacogenetics of antidepressant response. J. Psychiatry
Neurosci. 36, 87–113 (2011).

51. Shmelkov, S. V. et al. Slitrk5 deficiency impairs corticostriatal circuitry and
leads to obsessive-compulsive-like behaviors in mice. Nat. Med. 16, 598–602
(2010).

52. Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W. & Craig, A. M. Neurexins
induce differentiation of GABA and glutamate postsynaptic specializations via
neuroligins. Cell 119, 1013–1026 (2004).

53. Doly, S. & Marullo, S. Gatekeepers controlling GPCR export and function.
Trends Pharmacol. Sci. 36, 636–644 (2015).

54. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration
in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).

55. Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci. Nature 511,
421–427 (2014).

56. Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function
and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94
(2016).

57. The UniProt Consortium. UniProtKB—P28223 (5HT2A_HUMAN). http://
www.uniprot.org/uniprot/P28223. Accessed 8th August (2016)

58. Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016).
59. Niknafs, N. et al. MuPIT interactive: webserver for mapping variant positions to

annotated, interactive 3D structures. Hum. Genet. 132, 1235–1243 (2013).
60. Chen, F., Venugopal, V., Murray, B. & Rudenko, G. The structure of neurexin

1α reveals features promoting a role as synaptic organizer. Structure 19,
779–789 (2011).

61. NCBI Resource Coordinators. Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).

62. Chen, Y.-K., Y.-K., C. & Y.-P., H. cortactin-binding protein 2 modulates the
mobility of cortactin and regulates dendritic spine formation and maintenance.
J. Neurosci. 32, 1043–1055 (2012).

63. Lambe, E. K., Fillman, S. G., Webster, M. J. & Shannon Weickert, C. Serotonin
receptor expression in human prefrontal cortex: balancing excitation and
inhibition across postnatal development. PLoS ONE 6, e22799 (2011).

64. Jenkins, A. K. et al. Neurexin 1 (NRXN1) splice isoform expression during
human neocortical development and aging.Mol. Psychiatry 21, 701–706 (2016).

65. El Sayegh, T. Y. et al. Cortactin associates with N-cadherin adhesions and
mediates intercellular adhesion strengthening in fibroblasts. J. Cell Sci. 117,
5117–5131 (2004).

66. Chen, Y. K., Chen, C. Y. & Hu, H. T. CTTNBP2, but not CTTNBP2NL,
regulates dendritic spinogenesis and synaptic distribution of the striatin–PP2A
complex. Mol. Biol. Cell 23, 4383–4392 (2012).

Acknowledgements
We thank the participating individuals for their support, Eric S. Lander, Steven E.
Hyman, Jessica Alföldi, and Kaitlin Samocha for valuable input; Leslie Gaffney for help
with illustrations; Jeremiah M. Scharf for sample contribution and discussions; and
Broad Genomics Platform for sample processing, sequencing, and genotyping. H.J.N. is
supported by the AKC Health Foundation and Swedish Research Council, C.R. by the
Swedish Research Council (K2013-61P-22168), K.L.-T. by the Swedish Medical Research
Council and European Research Council, and E.K.K. by NIH NIMH (1R21MH109938-
01). A Broad Institute SPARC grant supported part of this work.

Author contributions
K.L.-T., E.K.K., G.F., H.J.N., and R.T. conceived and designed the experiments. H.J.N.,
R.T., E.K.K., J.F., C.O.’D., R.S., D.H., D.P.G., K.L.-T. analyzed the data. H.J.N., D.P.G.,
E.K.K., and K.L.-T. wrote the paper. R.T. and H.J.N. performed sequence capture. R.S.
performed EMSA. M.W., H.-J.G., S.R., C.A.M., S.E.S., S.A.R., M.A.J., J.A.K., C.R., E.G.,
G.L.H., D.C.C., E.A., S.W., P.D.P., C.H., M.T.P., and C.N.P. diagnosed/collected samples.
J.J., M.K., and G.v.G. coordinated/prepared samples and data generation.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00831-x.

Competing interests: The authors declare is no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00831-x

12 NATURE COMMUNICATIONS |8:  774 |DOI: 10.1038/s41467-017-00831-x |www.nature.com/naturecommunications

http://www.uniprot.org/uniprot/P28223
http://www.uniprot.org/uniprot/P28223
http://dx.doi.org/10.1038/s41467-017-00831-x
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


Hyun Ji Noh 1, Ruqi Tang1,2,3, Jason Flannick1, Colm O’Dushlaine1, Ross Swofford1, Daniel Howrigan1,

Diane P. Genereux1, Jeremy Johnson1, Gerard van Grootheest 4, Edna Grünblatt 5,6,7, Erik Andersson8,

Diana R. Djurfeldt8,9, Paresh D. Patel10, Michele Koltookian1, Christina M. Hultman11, Michele T. Pato12,

Carlos N. Pato12, Steven A. Rasmussen13, Michael A. Jenike14, Gregory L. Hanna 10, S.Evelyn Stewart15,

James A. Knowles 12, Stephan Ruhrmann16, Hans-Jörgen Grabe17, Michael Wagner18,19, Christian Rück8,9,

Carol A. Mathews20, Susanne Walitza5,6,7, Daniëlle C. Cath21, Guoping Feng2,22,

Elinor K. Karlsson 1,23 & Kerstin Lindblad-Toh1,24

1Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. 2Department of Brain and Cognitive Sciences, McGovern
Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA. 3Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Huangpu Qu, Shanghai 200001, China. 4GGZ inGeest and Department of
Psychiatry, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. 5Department of Child & Adolescent
Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Neumünsterallee 9, Zurich 8032, Switzerland.
6Neuroscience Center Zurich, University of Zurich & ETH Zurich, Winterthurer Strasse 190, Zurich 8057, Switzerland. 7Zurich Center for Integrative
Human Physiology, University of Zurich, Winterthurer Strasse 190, Zurich 8057, Switzerland. 8Department of Clinical Neuroscience, Centre for
Psychiatry Research, Karolinska Institutet Tomtebodavägen 18A, Stockholm 17177, Sweden. 9Stockholm Health Care Services, Stockholm County
Council, Stockholm 14186, Sweden. 10Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
11Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden. 12Department of Psychiatry & Behavioral
Sciences, USC, 2250 Alcazar Street, Los Angeles, CA 90033, USA. 13Department of Psychiatry & Human Behavior, Brown Medical School, 345
Blackstone Boulevard, Box G-BH, Providence, RI 02906, USA. 14Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA
02215, USA. 15BC Mental Health & Addictions Research Institute, UBC, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1. 16Department of
Psychiatry & Psychotherapy, University of Cologne, Kerpener Street 62, Cologne 50937, Germany. 17Department of Psychiatry & Psychotherapy,
University of Medicine Greifswald, Fleischmannstrasse 8, Greifswald 17475, Germany. 18Department of Psychiatry & Psychotherapy, University of
Bonn, Regina-Pacis-Weg 3, Bonn 53113, Germany. 19German Center for Neurodegenerative Diseases, Sigmund-Freud-Strasse 27, Bonn 53127,
Germany. 20Department of Psychiatry & Genetics Institute, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA. 21Department of
Clinical & Health Psychology, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, The Netherlands. 22Stanley Center for Psychiatric Research,
Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. 23Program in Bioinformatics & Integrative Biology and Program
in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Sherman Center, Worcester, MA 01605, USA.
24Science for Life Laboratory, IMBIM, Uppsala University, Uppsala 75236, Sweden. Elinor K. Karlsson and Kerstin Lindblad-Toh contributed equally
to this work

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00831-x ARTICLE

NATURE COMMUNICATIONS |8:  774 |DOI: 10.1038/s41467-017-00831-x |www.nature.com/naturecommunications 13

http://orcid.org/0000-0002-6634-0599
http://orcid.org/0000-0002-6634-0599
http://orcid.org/0000-0002-6634-0599
http://orcid.org/0000-0002-6634-0599
http://orcid.org/0000-0002-6634-0599
http://orcid.org/0000-0003-4350-6661
http://orcid.org/0000-0003-4350-6661
http://orcid.org/0000-0003-4350-6661
http://orcid.org/0000-0003-4350-6661
http://orcid.org/0000-0003-4350-6661
http://orcid.org/0000-0001-8505-7265
http://orcid.org/0000-0001-8505-7265
http://orcid.org/0000-0001-8505-7265
http://orcid.org/0000-0001-8505-7265
http://orcid.org/0000-0001-8505-7265
http://orcid.org/0000-0002-0742-6990
http://orcid.org/0000-0002-0742-6990
http://orcid.org/0000-0002-0742-6990
http://orcid.org/0000-0002-0742-6990
http://orcid.org/0000-0002-0742-6990
http://orcid.org/0000-0002-3307-5741
http://orcid.org/0000-0002-3307-5741
http://orcid.org/0000-0002-3307-5741
http://orcid.org/0000-0002-3307-5741
http://orcid.org/0000-0002-3307-5741
http://orcid.org/0000-0002-4343-3776
http://orcid.org/0000-0002-4343-3776
http://orcid.org/0000-0002-4343-3776
http://orcid.org/0000-0002-4343-3776
http://orcid.org/0000-0002-4343-3776
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Integrating evolutionary and regulatory information with multispecies approach implicates genes and pathways in obsessive-compulsive disorder
	Results
	Targeted-sequencing design
	Variant detection
	Variant annotation
	Gene-based burden analysis
	Validation of candidate variants by genotyping
	Functional validation of regulatory variants using electrophoretic mobility shift assay
	Validation of coding variants using ExAC

	Discussion
	Methods
	Study design
	Targeted regions
	Pooled sequencing and variant annotation
	Genotyping
	EMSA
	Statistical analysis
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




